SIEMENS

Combining Test and Simulation to tackle boundary condition mismatches in Environmental Testing

Presenter: Bart Peeters Product Line Manager Structures & Environmental Testing

Unrestricted | © Siemens 2021 | 2021-11-19 | Siemens Digital Industries Software | Where today

1

Main motivation for this work

- Current practices of component environmental vibration testing
 - · Non-realistic excitation
 - Mechanical impedance mismatch due to differences between the operational and the test boundary conditions
- Concern: real failure modes of the component are not correctly replicated
- · How can we improve it?
 - · Can we provide guidelines?
 - Can we use simulation to support the testing practice?

Service environment replication at the component level

Page 4 Unrestricted | © Siemens 2021 | 2021-11-19 | Siemens Digital Industries Software | Where today meets tomorrow.

The Boundary Condition Challenge

- · Initiated by Kansas City National Security Campus (Honeywell) & Sandia
- The challenge: replicate service environment responses at a component-level (shock & vibration tests)
- Demo hardware design: an easy-to-model structure, complicated enough for environmental testing
- Box Assembly with Removable Component (BARC)

Page 5 Unrestricted | © Siemens 2021 | 2021-11-19 | Siemens Digital Industries Software | Where today meets tomorrow.

SIEMENS

FE modelling and model validation Free-free boundary conditions

- · Modelled using Simcenter 3D (Nastran solver used for modal analysis)
- · Model validation using Simcenter Testlab
 - · Impact testing
 - Experimental modal analysis (EMA)
- Correlation and updating using Simcenter 3D

Mode	Exper. <i>f_n</i> [Hz] (1)	Num. <i>f_n</i> [Hz] Before Update (2)	Num. f_n [Hz] After Update (3)	Error [%] (1) - (2)	Error [%] (1) - (3)
1	182.84	185.32	187.57	-1.35	-2.59
2	201.22	199.84	202.008	0.69	-0.39
3	256.40	246.28	249.680	3.95	2.62
4	417.72	422.85	427.528	-1.22	-2.34
5	460.10	460.00	465.833	0.02	-1.25
6	545.44	538.45	545.449	1.28	0.00
7	572.07	561.29	569.197	1.89	0.50
8	648.57	641.55	650.517	1.08	-0.30
9	1069.98	1000.85	1023.110	6.46	4.38
10	1125.11	1068.49	1087.678	5.03	3.33

Page 7 Unrestricted | © Siemens 2021 | 2021-11-19 | Siemens Digital Industries Software | Where today meets tomorrow.

7

Fixture design

- The fixture is specifically designed for component level testing (without the box)
- The first resonant mode (fixed @ 4 holes) needs to be well above the upper limit of the frequency range of interest (2000 Hz)

Page 8 Unrestricted | © Siemens 2021 | 2021-11-19 | Siemens Digital Industries Software | Where today meets tomorrow.

SIEMENS

The challenge Random control - Control channel Acc:+Z

- Target obtained running an open-loop random test on the BARC (next level assembly)
 - (Flat voltage profile -> that's why acc profile is "dynamic")
- Random control on the HE+COMPONENT
 - The control perfectly matches the target in this case....
 - ...but responses completely off elsewhere!

Page 9 Unrestricted | © Siemens 2021 | 2021-11-19 | Siemens Digital Industries Software | Where today meets tomorrow.

Mission Synthesis / "Test Tailoring"

How to derive realistic vibration qualification specifications for complex device-under-test (DUT) mounted on a vibrating structure?

- Based on measurements in the real-life environments (instead of generic standards)
- · Principle of "damage equivalence"

Data acquisition during product mission

Mission analysis and test specification synthesis

Page 10 Unrestricted | © Siemens 2021 | 2021-11-19 | Siemens Digital Industries Software | Where today meets tomorrow.

SIEMENS

10

Operational Environment Road Excitation recordings

Page 11 Unrestricted | © Siemens 2021 | 2021-11-19 | Siemens Digital Industries Software | Where today meets tomorrow.

Operational Environment Road Excitation recordings

Page 12 Unrestricted | © Siemens 2021 | 2021-11-19 | Siemens Digital Industries Software | Where today meets tomorrow

SIEMENS

12

MIMO Random Control 3D Excitation with a 10-kN three-axis shaker

- 10 kN Dongling Shaker (courtesy of University of Ferrara)
- 21 ICP Channels (5 Accels + 6 strain sensors)
- 3 Drives
- Simcenter SCADAS Mobile SCM05V
- Simcenter Testlab Environmental Testing

Fully 3D coupled empty shaker MIMO Control needed

Page 13 Unrestricted | © Siemens 2021 | 2021-11-19 | Siemens Digital Industries Software | Where today meets tomorrow.

MIMO Random Control Test Setup

- 15kg off-the-shelf head expander
- 20x30 iron plate to fix the BARC on the HE (holes compatibility)

Page 14 Unrestricted | © Siemens 2021 | 2021-11-19 | Siemens Digital Industries Software | Where today meets tomorrow.

SIEMENS

14

MIMO Random Control Test Setup and planning

Test run using different control strategies

- SISO Z-dir (same conclusions with X and Y)
- MIMO controlling the Base (X, Y, Z) (3x3 --> square control)
- MIMO controlling the Base and the Box (9x3 --> rectangular control)

The idea is to look what happens <u>at the</u> component level

- Monitoring acceleration channels
- Monitoring ICP strain sensors

CONTROL MONITORING

SISO Random Control with shaker of comparable size Controlling the Base (Z only)

Monitoring (Z) +/-OK, except over-testing @1700 Hz

Page 16 Unrestricted | © Siemens 2021 | 2021-11-19 | Siemens Digital Industries Software | Where today meets tomorrow.

SIEMENS

16

MIMO Random Control Controlling the Base (Square control)

CONTROL MONITORING

Page 17 Unrestricted | © Siemens 2021 | 2021-11-19 | Siemens Digital Industries Software | Where today meets tomorrow.

MIMO Random Control Using simulation models to enhance understanding

Largest deviations at box resonances

Page 18 Unrestricted | © Siemens 2021 | 2021-11-19 | Siemens Digital Industries Software | Where today meets tomorrow.

SIEMENS

18

Page 19 Unrestricted | © Siemens 2021 | 2021-11-19 | Siemens Digital Industries Software | Where today meets tomorrow.

MIMO Random Control Controlling the Base and the Box (Rectangular control)

CONTROL MONITORING

Page 20 Unrestricted | © Siemens 2021 | 2021-11-19 | Siemens Digital Industries Software | Where today meets tomorrow.

SIEMENS

20

MIMO Random Control Controlling the Base and the Box (Rectangular control): strain measurements

Quality increase: SISO < Square < Rectangular MONITORING

CONTROL MONITORING

Page 21 Unrestricted | © Siemens 2021 | 2021-11-19 | Siemens Digital Industries Software | Where today meets tomorrow.

Time Waveform Replication Square Control

Page 22 Unrestricted | © Siemens 2021 | 2021-11-19 | Siemens Digital Industries Software | Where today meets tomorrow.

SIEMENS

22

Time Waveform Replication Rectangular Control

Page 23 Unrestricted | © Siemens 2021 | 2021-11-19 | Siemens Digital Industries Software | Where today meets tomorrow.

The Boundary Condition Challenge

Page 24 Unrestricted | © Siemens 2021 | 2021-11-19 | Siemens Digital Industries Software | Where today meets tomorrow

Conclusions

- The environmental replication in the lab is influenced by the mismatch between the operational and the laboratory impedance and excitation mechanisms
- · Very good response replication @ the control channels does not necessarily mean good operational replication
 - Excitation mechanism
 - Impedance mismatch
- Improvements possible? Conclusions from this introductory study:
 - Try to get as close as possible to the next level assembly during the testing and to the real excitation mechanism (3DOF? 6DOF?)
 - Try to control multiple sensors in the next level assembly during the testing.
 - · Main interest lies in the responses at the component level
 - Control channels @ Base (rectangular case) may not look as good as the square or SISO case, but we are actually doing better
 - Control channels are matched <u>in a least-square sense</u> (i.e. as good as possible given imperfect fixture/excitation mechanism)

Page 25 Unrestricted | © Siemens 2021 | 2021-11-19 | Siemens Digital Industries Software | Where today meets tomorrow.

SIEMENS

26