

Impact stress estimation in a rock drilling machine piston*

SEES meeting Vibration and shocks RISE, Borås

Anton Tkachuk, Mohamed Sadek, Reza Bakhshandi, Mikael Grehk, Jens Bergström

* A part of the paper on failure analysis is under preparation

Motivation

Axisymmetric analysis of normal impact

Full 3D analysis for different misalignment angles

Discussion of stress fields

Take-away facts

MOTIVATION

Increasing lifetime of the impact piston is a crucial task

- Other parts are easier to replace
- Difficulty in inspection
- Expensive part due to complex geometry and heat treatment together with expensive material

Failure analysis requires accurate estimation of tensile stress!

Karlstad University, Mechanical and Materials Engineering

[BCnacumup , CC BY-SA 2.0]

MOTIVATION

Typical conditions

- Impact frequency 10-50 Hz
- Impact velocity 10-11 m/s
- Flat on flat impact with estimated maximum misalignment angle 0.22°
- Uncontrolled amount of lubrication
- Uncontrolled temperature
- No possibility to measure stress

Mercedes Safety Center - E-Class (2017) CRASH TEST - YouTube

Therefore, only estimation of the stress is possible!

MOTIVATION

Goals for current study

Rotating Shank

adapter

- Estimate stress during impact at surface
- Explain various crack growth patterns
- Find the most dangerous load case
- Develop understanding of the process

Approach

Impact piston

- Use explicit dynamics simulation (with Abaqus)
- Simplify geometrical features and boundary conditions
- Neglect mechanism of pitting formation on surface
- Differentiate between crack initiation and growth

Bushing

Head of piston

(Fractured)

KARLS

Setup for simulations

Mesh size 0.2 mm (5400 FE) Simulation CPU time ca. 5 s

Expected solution

Cerv, J., Adamek, V., Vales, F., Gabriel, D., & Plesek, J. (2016). Wave motion in a thick cylindrical rod undergoing longitudinal impact. *Wave Motion*, *66*, 88-105.

A STILLY

Obtained solution

Obtained solution for point D

Summary of obtained solution for axisymmetric impact

Point	Α	В	C	D
Max von Mises stress, MPa	533	279	476	334
Max Tresca stress, MPa	591	285	510	379
Tensile hoop stress, MPa	231	166	98	98
Tensile radial stress, MPa	45	169	127	89

Stress are not high enough to open cracks in the used low alloyed steel It is not the most dangerous load case A more dangerous load case from literature*

*Wang, J., Han, B., Wang, C., Gong, Y., Li, Y., Neville, A., & Morina, A. (2021). Failure analysis of the piston used in a pneumatic down the hole impactor. *Engineering Failure Analysis*, *127*, 105561.

Setup of simulation

KARLSY WARLSY CONTRACTOR

 $r_i = 6 \,\mathrm{mm}$ $r_o = 18 \,\mathrm{mm}$ $H = 45 \,\mathrm{mm}$ $E = 210 \cdot 10^3 \,\mathrm{MPa}$ $\nu = 0.3$ $\rho = 7.85 \cdot 10^{-6} \, \mathrm{kg/mm^3}$ $\mu = 0.1$ $v_0 = 10 \cdot 10^3 \,\mathrm{mm/s}$ $t_{end} = 44 \cdot 10^{-6} \,\mathrm{s}$ $\alpha = 0.11^{\circ}, 0.22^{\circ}$ Mesh size 0.2 mm (ca. 6.8M FE)

Units: mm-kg-s

Simulation CPU time ca. 6h on 12 cores

Deformation due to misalignment angle α =0.22°

Results for α=0.11°

Fig. 12 Maximum principal stress in MPa on impact surface of the piston for misalignment angle α =0.11°

Summary of results for α =0.11°

	Α	В	С	D	
v. Mises, MPa	297	414	433	359	
Max Principal, MPa	192	134	372	285	
Tensile hoop stress, MPa	188	60	338	285	
Tensile radial stress, MPa	129	111	65	74	

Higher values!

Results for α=0.22°

Fig. 13 Maximum principal stress in MPa on impact surface of the piston for misalignment angle α =0.22°

Summary of results for α =0.22°

	Α	В	С	D	
v. Mises, MPa	278	546	1174	402	
Max Principal, MPa	201	549	773	235	
Tensile hoop stress, MPa	66	549	761	235	
Tensile radial stress, MPa	200	34	52	132	

Quite high values!

Interpretation

Take-away facts

Estimation of stress in rock drilling piston is difficult: due to uncertainties and missing data most dangerous load case is not known in advance

Series of numerical simulation on simplified geometries give insights on: Impact with misalignment is more dangerous than normal impact Strong dependence on misalignment angle Misalignment angle α =0.22° yields hoop stress up to 761 MPa Impact stress wave changes the sign with condition $v_0 > c_p \tan(\alpha)$