www.creodynamics.com

Fredrik Samuelsson @ Faurecia Creo

This document and the information contained herein is the property of Saab AB and must not be used, disclosed or altered without Saab AB prior written consent.

Tonal Noise in Gripen

Cockpit Noise and Vibration Autumn Meeting SEES 2021-11-19

Fredrik Samuelsson Saab Aeronautics (Faurecia Creo)

Background

- Tonal noise phenomena have been observed in some Gripen C aircraft.
- A similar phenomena was also observed in one Gripen E test aircraft.
- It was found out that an incorrectly installed seal was the cause in the Gripen E test aircraft.
- The findings in the Gripen E test aircraft led to the question if it is the same phenomena in Gripen C.
- A study of this was performed in Gripen C aircraft 39.266.

Test Installation

- cockpit noise
- Two microphones
 - Pilot chest
 - Pilot helmet

- Siemens LMS SCADAS-XS recording unit
 - Placed in thigh pocket (see picture)
 - Weight ~500 g

Test Installation

- Vibration

- Accelerometers at equipment attachment
- Data recorded with an ACRA system from Curtiss-Wright

Test cases

- Level flight at **1000 m** (3 300 ft)
 - M0.8, M0.9, M0.95, Supersonic
 - ~30 s at each speed

NOT CLASSIFIED | NOT EXPORT CONTROLLED Fredrik Samuelsson Saab Aeronautics (Consultant from Faurecia Creo)

6

Baseline configuration

Chest sound Baseline configuration

Vibration Baseline

Comparing "Sine" with "Random" excitation

- Random data converted to equivalent Sine level
- SDOF resp. used
- Broadband random data assumed
- A_{sinpeak} = 2.5 A_{BBrms}

$$A_{sin} = 2.5 \sqrt{\frac{\pi}{2} \cdot PSD_{BB} \cdot f_n \cdot \frac{1}{Q}}$$

Conclusion "Baseline old seal"

- Vibration levels in 39.266 are higher than "normal"
 - levels are above qualification curve BI
 - Supersonic speeds at low altitudes
- At high altitudes the levels are below qualifications.
- Levels are still below qualification levels for Gunfire.
- Life is consumed at a higher rate than assumed when flying supersonic at low altitudes.

Taped intake

Chest sound taped intake

Vibration taped intake

Conclusion "Taped" inlet

- No tonal sound in cockpit observed.
- Weak tonal vibration observed.
- Vibration levels are however below qualification for all speeds.

Changed seal

New seal

Chest sound new seal with support

New seal with support

Conclusion "New seal+support bracket"

- No tonal sound in cockpit observed.
- No tonal vibration observed at equipment.
- Vibration levels are below qualification for all speeds.

Summary

- Tonal noise phenomena in 39.266 origin from bad seals in ECS air intakes
- Generates high vibration levels at high speeds
- The data show that there is no immediate risk
- It is recommended to avoid flying with tonal noise at these conditions for long periods.
- Aircraft with tonal noise shall be fitted with new seals

