

Corrosivity measures **PhD Peter Eriksson** Product Durability/RISE

C	Corrosivity measures — using:
	Metal coupons
	Aircorr (will be presented by D. Thierry PISE)
• • • • • • • • • • • • • • • • • • • •	Mobile testing (will be presented by C. Schneiker, RISE)

Metal coupons: ✓ Mass loss (balance) Weight increase (balance) Cathodic Reduction (electrochemical set-up) Corrosion Products Analysis (XRD/SEM-EDX/FTIR)/...

Estimate Lifetime of products from field exposure values to using accelerated test methods: - Metal loss values

weight increase values

Methodology: Metalloss

ISO 21207 method B According to Corrosion rate in ISO 21207, method B: Three weeks is equal to $= 40 \text{ g/m}^{2}$ 80 70 Ē 60 60 rate What is the estimated years in 50 rosion 40 C3 or C4 (according to ISO 9224) 30 20 10 0

Corrosion of Copper

Time (weeks)

According to ISO 9224:2012

 40 g/m^2 metall loss is reached after:

Ex. C4 \rightarrow 2 years Ex. C3 \rightarrow ca. 6 years

Metal	Corrosivity		Exposure time years														
	category	1	2	5	10	15	20										
	C1	0,9	1,4	2,6	4,2	5,5	6,6										
	C2	5	8	20	23	30	37										
Connor	C3	12	19	35	56	73	88										
Сорры	C4	25	40	73	116	152	184										
	C5	50	79	146	232	304	368										
	CX	90	143	263	418	548	664										

(the table shows maximum corrosion in resp. corrosivity class!)

Copper exposed in vehicle – 1 year

Corrosion (1 year) = 5000 mg/m^2

How many weeks in ISO 21207, method B is this equal to? According to ISO 21207, Table 1 Calculating from Eq.1 Β. OSION In general: 70 Corrosion (g/m2) Corr (t) = Corr_{1 year} x t^x (Eq.1) 60 50 $\ln \operatorname{Corr}(t) = \ln \operatorname{Corr}_0 + x \ln t$ 40 30 Calculate the corrosion equation for the corrosion in question 20 Time (weeks)

How many weeks in ISO 21207, method B, is this equal to....?

B. Calculating from Eq.1

In general:

$$Corr(t) = Corr_{1 year} x t^{x}$$
 (Eq.1)

 $\ln \operatorname{Corr}(t) = \ln \operatorname{Corr}_0 + x \ln t$

Calculate the slope (x) for the corrosion in question For ISO 21207 method B: X= 1,21

The corrosion curve for ISO 21207 method B Corr (t) = $C_{o*} t^{1,21}$; $C_{o} = 10 g/m^2$

Estimate time in corrosivity class (in field) from exposure in an accelererated corrosion test: metal loss values Weight increase values

Ex. IEC 60068-2-60, method 4 Three weeks is equal to $= 180 \text{ mg/m}^2/\text{day x } 21 \text{ days} = 3800 \text{ mg/m}^2$ What is the estimated years in C2 (according to ISO 11844-1:2006)?

Estimation of years in C2

ISO 11844-1:2006

For 3800 mg/m²

 $t = e^{(\ln((Corr, tot) / (Corr, 1 year)) / x)}$

Where:

Corr.tot = 3800 mg/m^2 Corr, 1 year = 2000 mg/m^2 X = 0,7

Time (t) = $e^{[ln(3800/3000))/(0,7)]}$ = 1,8 years

Key

Y Mass increase after 1 year of exposure (mg/m²)

Figure A.2 — Copper corrosivity classification according to ISO, IEC and ISA

methodolgy: Cathodic reduction > This method is used when the corrosion rate is very low (consequently thin corrosion products layers)! Used in the standard ANSI/ISA-71.04-2013 (ANSI = American National Standards Institute) (ISA = International Society of Automation)

methodolgy: Cathodic reduction

RI. SE

The corrosion layer after 30 days is measured using
$x1 = x(t1/t)^{A}$
Where:
x1 = is the equivalent film thickness after 30 days
x = is the measured film thickness after time t
t1 = is thirty days
<mark>t</mark> = is the actual test time (days)
A = is equal to 0.3 for G1, 0.5 for G2, and 1 for G3 and G

methodolgy: Cathodic reduction

Th	o correcivity is thereafter	r docid	ad accord	ling to t	ha C
. . . .	e corrosivity is thereafter	ueciu	eu accorc	ing to t	ne G-
de	scification				
			· · · ·		
			and the second		
		· · · · · · · · ·	· · ·		
		· · · · · · · · · ·			
	Severity level	G1 - Mild	G2 - Moderate	G3 - Harsh	GX - Severe
	Severity level Copper reactivity level (in angstroms)*	G1 - Mild < 300	G2 - Moderate < 1000	G3 - Harsh < 2000	GX - Severe ≥2000
	Severity level Copper reactivity level (in angstroms)* Silver reactivity level (in angstroms)*	G1 - Mild < 300 < 200	G2 - Moderate < 1000 < 1000	G3 - Harsh < 2000 < 2000	GX - Severe ≥2000 ≥2000

Field values – can be find in the following standards:

•••	•	· ·	- - -	· ·	•	• •	•	S	U	ar		19	r (5		•	· ·	•	· ·	•	· ·	•	•	· ·	•	· ·							
	•		-					÷		•									-					-										
•••	•	· ·	-	· ·	-	• •		-			IS	0		92	2	2.	4		N	le	?t	a	l	l	9.	S.S	Ś)							
	•	•••	•	•••	•	• •	•	•		•	· ·	•••	• •	•	• •		•	· · ·	•	•••	•	• •	•	•	•••	•								
	-	 						÷				· ·						 		 	÷	 	-	- - -		-								
•••	•	 		· ·	•	• •	•	•	• •	•	TC		 	1	1	0	/	· · ·		· ·	•	 	•			•	 						1	
· · ·	•	· ·		· ·	•	• •			• •		l)		, , , , , ,			34	44	4	(W	' <i>е</i>	1	31	1	t	11	10	Ci	re	20	lS	e)	
	•	 	÷	 	•	• •	•	÷	• •		 	 	 					 	•	 	•	 	•	:	 	•	 							
•••	•	•••	•	· ·	•	• •	•	•	• •	• •	 	· ·	• •	•	• •		•	· ·	•	· ·	•	 	•	• •	· ·	•	• •							
•••	•	· ·	-	· ·	•	• •		-	· ·		IS	A		7	1.	0	4		((: A	t	h	20	d	ic		r	e	d	U	<i>C1</i>	tic) /	l
	•	· ·	1	· ·	-		•	-	• •	•	· ·	· ·	• •		• •		•	. X 	•	· ·	-	· ·	-	:	· ·	-	• •							
	•	• •	1	· ·	-		•	÷	• •	•	 	• •	· ·		• •		:	• •	1	• •	1	• •	•	1	• •	•	• •							
• •	•	• •		· ·	:	• •	•	1	• •	•	· ·	• •	• •	•	• •		:	· ·	-	· ·	1	· ·	•	:	· ·	•	• •							
• •	•	· ·	e e	· ·	•	• •		-	• •	•	· ·	•••	• •	•	• •		• •	· ·	•	· ·	•	· ·	•		• •	•	• •							