

MTS GROUND VEHICLE SOLUTIONS

Vibration testing using RPC-Software

Hans-Peter Beggel Systems Engineer MTS Systems (Germany) GmbH 2022-04-07 be certain.

Overview of presentation

MTS GROUND VEHICLE SOLUTIONS

- » Single Axial Testing vs. Multi Axial Testing
- » Multi-Axial-Testing using MTS RPC-software
- » PSD-testing using MTS RPC-software
- » Summary

Single Axial Testing vs. Multi Axial Testing

- » Most specimen see multi-axial loading in real life
- » Sequential load application do not result in same failure modes as simultaneous load application
- » Significant time saving, if simultaneous load application is applied

Single-axial testing

- Simple test setup
- Simple control algorithms sufficient
- Compensation techniques for single channel actuation can be applied

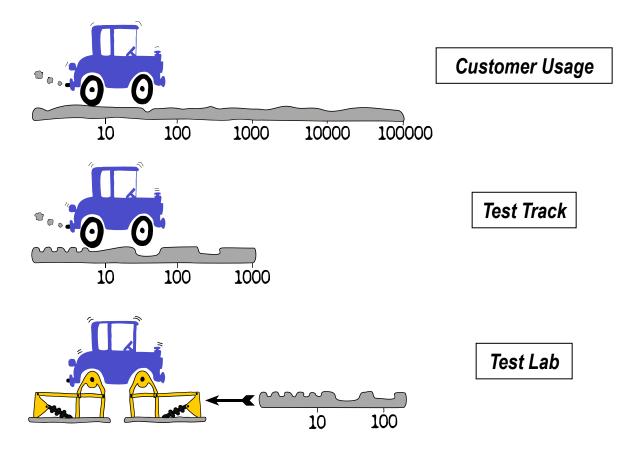
Multi-axial testing

- More complex test equipment (hardware) necessary
- More complex simulation software reguired to compensate cross coupling effects
- Limitations to software solutions to control such systems

Virbation Testing using RPC software

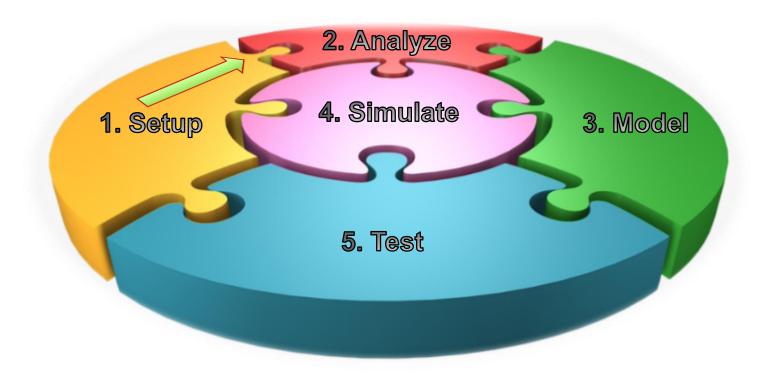
MTS GROUND VEHICLE SOLUTIONS

Durability/vibration testing of a variety of components or assemblies


Multi Axial Testing using RPC-Software

- » What does RPC mean?
- » Why is RPC-Software required?
- » To achieve desired and recorded load data
 - Non-linear behaviour of specimen
 - Cross coupling effects must be respected
 - Compensate for amplitude and phase lag between actuation and specimen
 - Control to parameters, which is not the feedback of the control loop

What is RPC needed for?


The fundamental driving force of why we need RPC is to reproduce the *failure* caused by the road in a controlled lab environment

Reproduce road damage in the lab with reduced test time

What is RPC needed for?

- MTS GROUND VEHICLE SOLUTIONS
- » To fulfill the required steps with the help of RPC, we divide the software into *five* parts:

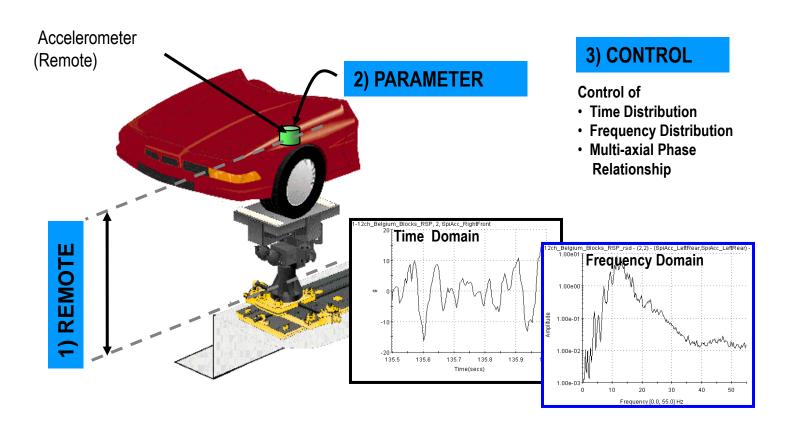
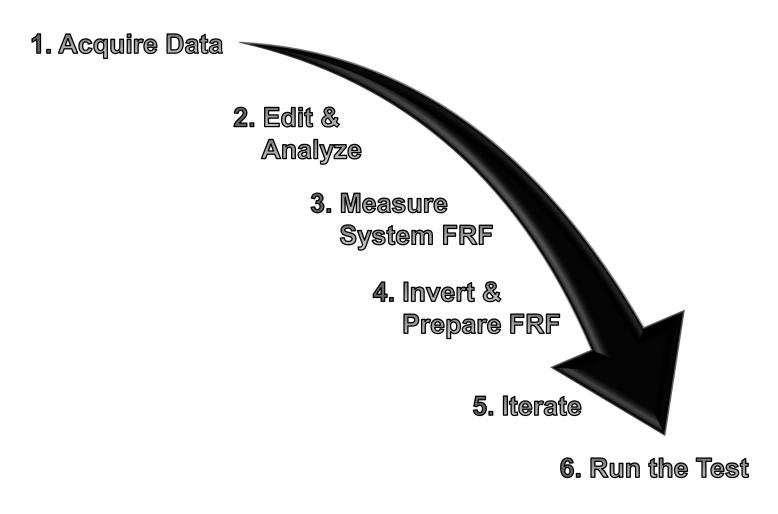


Illustration of RPC Connect stages

What does RPC mean?

MTS GROUND VEHICLE SOLUTIONS


» RPC means <u>Remote</u> <u>Parameter</u> <u>Control</u>

MTS GROUND VEHICLE SOLUTIONS

Six Steps Of RPC Testing - Overview

》

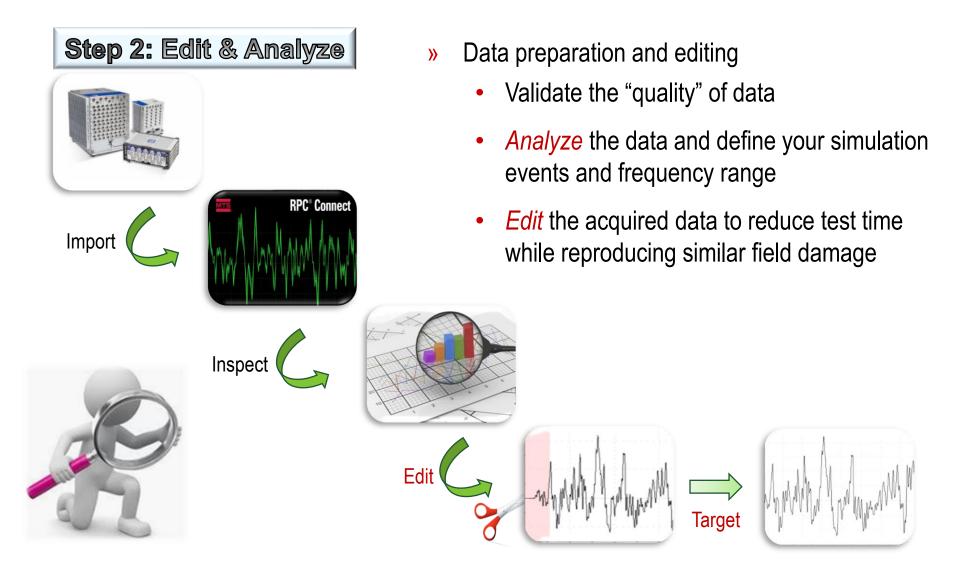
Hans-Peter Beggel, MTS Systems (Germany) GmbH

Page 10

Road data typically comes from the *proving ground* where events are specifically designed to induce high dynamic loads into the vehicle

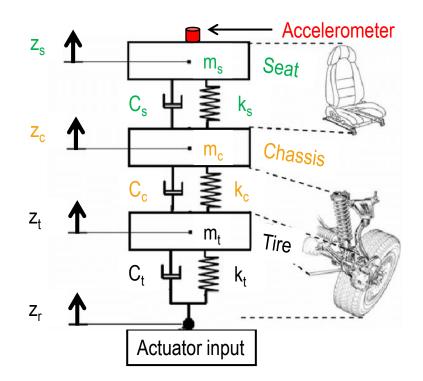
- reproduce the failures in the lab
- We need data to understand the loading a component experiences so that we can **>>**

Six Steps Of RPC Testing

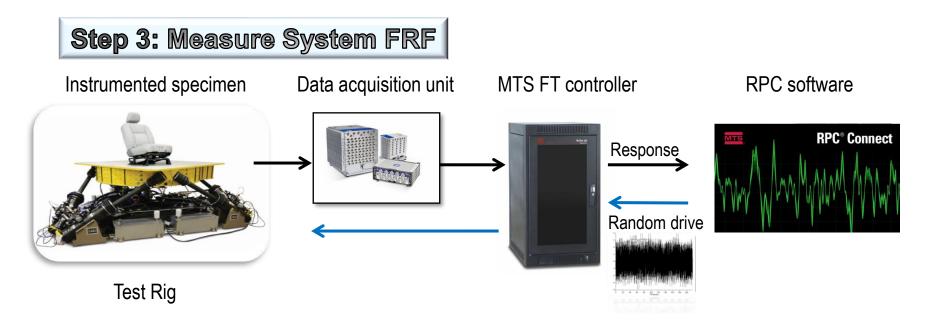

Step 1: Acquire Data

Data acquisition unit

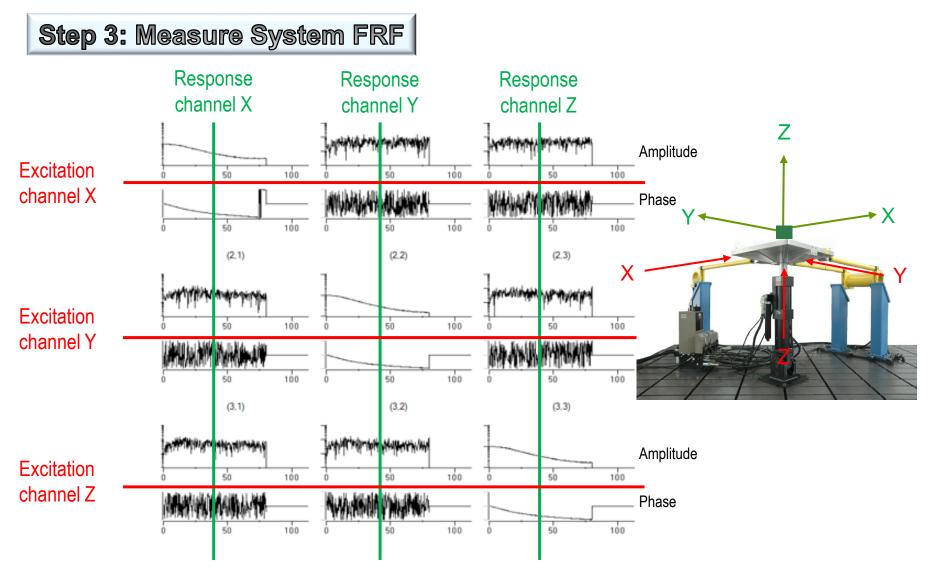




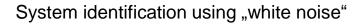
Step 3: Measure System FRF



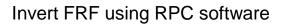
- » System Frequency Response Function (FRF) is needed to find the relationship between system "actuator" input and specimen "transducer" output
- » Modeling system FRF is the first time we will use the test specimen with the test equipment and will excite with a random input

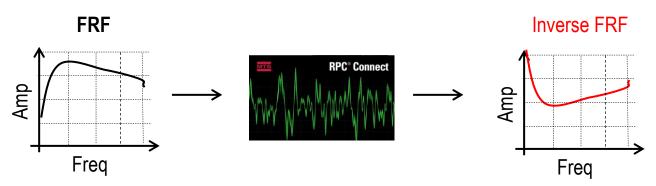

» Measure System Model

- Install instrumented specimen on the test rig and excite with random signal
- Define the relationship between system *input* and *output* across frequency bands
 - Calculate a linear model of the system for each frequency line
 - Determine the cross coupling effects between inputs and outputs

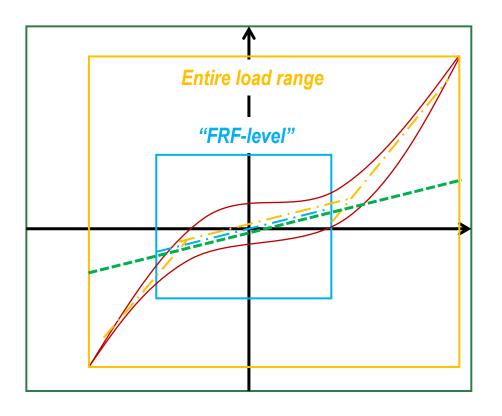

MTS GROUND VEHICLE SOLUTIONS

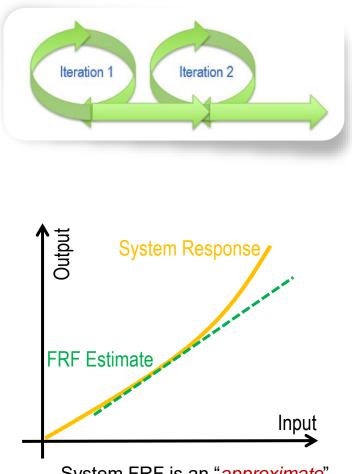
Six Steps Of RPC Testing



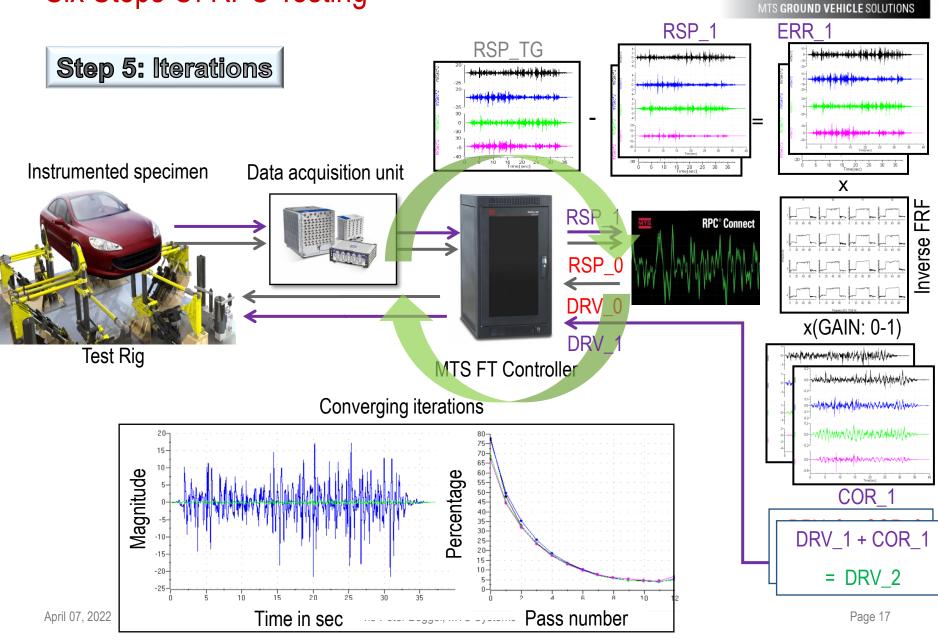


Step 4: Invert and Prepare FRF Inverse

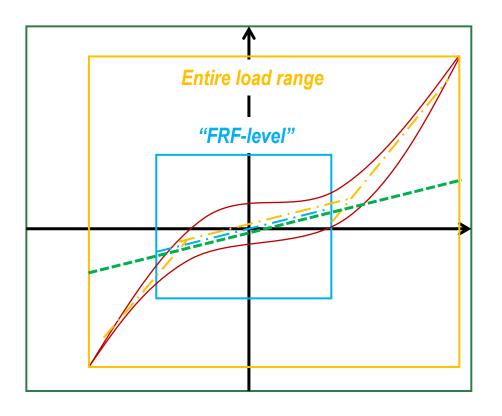


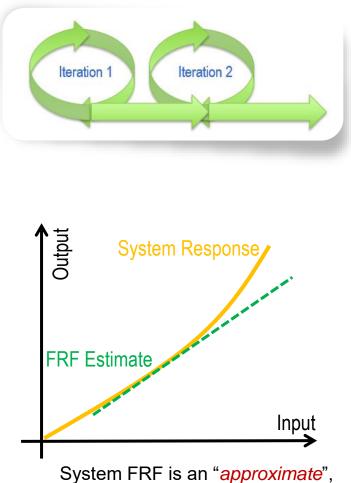

With inverted FRF, you can calculate the Input (drive) to a desired Output (response)

Step 5: Iterations

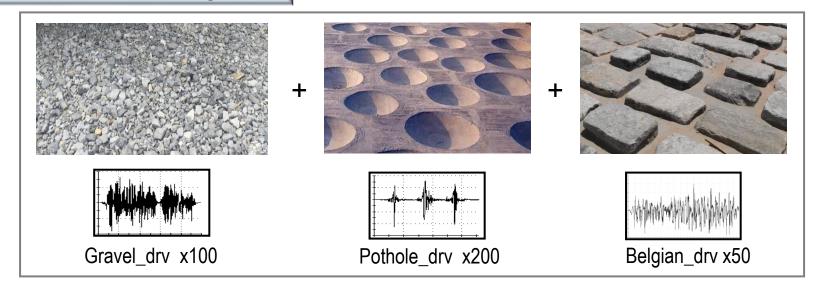


System Identification (FRF) executed at reduced load level

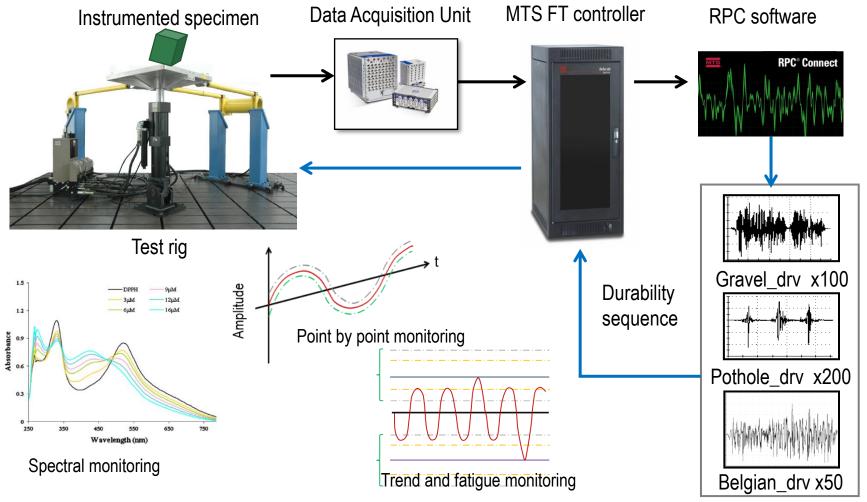

System FRF is an "*approximate*", linearized model of the system



Step 5: Iterations


System Identification (FRF) executed at reduced load level

linearized model of the system


Step 6: Durability Test

- » After iterating each of the individual road profiles, a durability test can be constructed
- The durability test is created to replicate the durability schedule that would also be conducted at the track
- » Run durability test to verify the product "life"

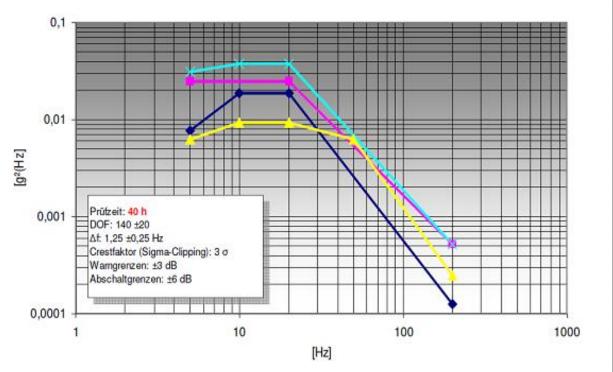
Step 6: Durability Test

MT

MTS GROUND VEHICLE SOLUTIONS

MTS GROUND VEHICLE SOLUTIONS

Multi-Axial PSD-Testing using RPC


- » Generate the Shape Matrix out of the PSD
- » Generate the random TH-signal
- » Iterate the desired TH-signal
- » Playout the achieved drive signal

MTS GROUND VEHICLE SOLUTIONS

Multi-Axial PSD-Testing using RPC

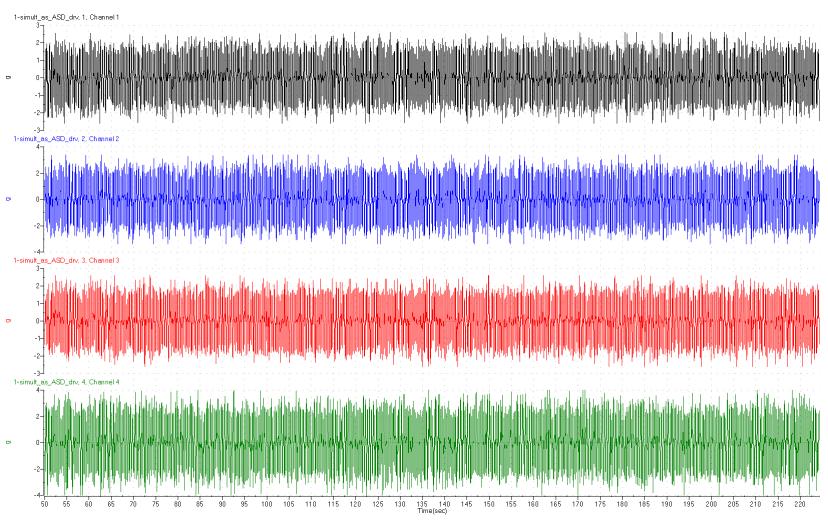
» Given PSD for 4 locations

V					
X- Richtung					
Hz	ng	g²/Hz	(m/s ²) ² /Hz		
	5	0,0077	0,74		
	10	0,0186	1,79		
	20	0,0186	1,79		
	200	0,000125	0,012		
RMS		0,74			
Y-Rich	tung (
Hz		g²/Hz	(m/s²)²/Hz		
	5	0,0247	2,38		
	20	0,0247	2,38		
	200	0,00052	0,05		
RMS		0,97			
Y-Richtung unten					
Hz		g²/Hz	(m/s²)²/Hz		
	5	0,0062	0,6		
	10	0,0093	0,895		
	20	0,0093	0,895		
	50	0,0062	0,6		
	200	0,000248	0,024		
RMS		0,74			
Z-Richtung					
Hz		g²/Hz	(m/s²)²/Hz		
	5	0,031	2,98		
	10	0,0372	3,58		
	20	0,0372	3,58		
	200	0,00052	0,05		
RMS		1,14			

» Generate the Shape Matrix out of the PSD

Shape 🜞 🔻				Ľ	_ □ ? ×		
* Input/Output							
Inputs							
 Setup: 		(Channels:	DeltaF: Nyquist	Nyquist:		
Setup for PSD testing	▼ Driv	re 💌	4 0,125 256		256		
O Custom:							
Channels: DeltaF:	Nyqu	uist:					
# 4 # 0,1250	(Hz) 🔻 #	512,0000 (Hz) 🔻					
Output							
Shape Matrix:		ntifier: Suffix:					
PSD 4-axis testing	Ψ	▼ _shp ▼	# ~ <i>×</i>				
PSD 4-axis testing_shp							
 Options 							
Log-Log (Frequency - Amplitude) Hann the Output Shape Matrix for filtering Freat the Output Matrix as an ASD Spectral Shape Definition							
Channel:					_		
1 Channel 1 👻 🚔		Set Standard Shapes 🕹		0 + -	- 년 🛉 👘		
Segment Frequency Value Type T (Hz) Theitenle	os) 🕶 🔻						
1 Start 5,0000	0,0077						
2 Amplitude 10,0000	0,0186						
3 Amplitude 20,0000	0,0186						
▶ 4 End 200,0000 #	0,000125						
Run and Close 💌 Stop							

Shape 🔅 🔻		ı≝ _ □ ? ×				
A Input/Output						
Inputs						
 Setup: 	Channels:	DeltaF: Nyquist:				
Setup for PSD testing	Drive - 4	0,125 256				
O Custom:						
Channels: DeltaF:	Nyquist:					
# 4 # 0,1250 (Hz) -	# 512,0000 (Hz) -					
Output						
Shape Matrix:	Identifier: Suffix:					
PSD 4-axis testing	shp • 🗮 • 🖄					
PSD 4-axis testing_shp						
* Options						
Axis Type: Log-Log (Frequency - Amplitude) Hann the Output Shape Matrix for filtering Treat the Output Matrix as an ASD						
 Spectral Shape Definition 						
Channel:						
2 Channel 2 👻 📥	Set Standard Shapes 🐱	🖻 + - /= 🔺 +				
Segment Frequency Value Type T (Hz) Tlos) T						
1 Start 5,0000 0,0247						
2 Amplitude 20,0000 0,0247						
▶ 3 End 200,0000 # 0,00052						
Run and Close 💌 Stop						



MTS GROUND VEHICLE SOLUTIONS

» Generate a Time History signal out of the given PSD (Shape Matrix)

- » Iterate the generated time history signal representing the desired PSD
- » Run the endurance test with the iterated drive signal to exactly represent the PSD-TH.

What can RPC-software used for - summary

- Convert a desired Response signal into a Drive signal (Iterative process)
 - » Compensate for hydraulic performance roll-off
 - » Cross-coupling between channels
 - » Maintain correct amplitude and phase
 - » Control non-linear systems
- Analyze data in a number of different ways
 - » Time History domain
 - » Frequency domain
 - » Amplitude domain, statistics,
- Comprehense System Analysis and Simulation
 - » Fatigue analysis
 - » Playback drive signals, collect response signals
 - » Monitor specimen degradation
 - » Extract meaningful information from data (analyze data)
 - » Generate synthetic data
 - » Virtual simulation (e.g. in combination with ADAMS)
 - » Hybrid simulation (MTS HSRC approach)

MTS GROUND VEHICLE SOLUTIONS

Thank you very much for your attention!

Questions? Comments? Suggestions?