

This document and the information contained herein is the property of Saab AB and must not be used, disclosed or altered without Saab AB prior written consent.

111111

Test tailoringfrom LCEP to test specification

Ruoshan Luo Specialist in reliability

COMPANY RESTRICTED | NOT EXPORT CONTROLLED | NOT CLASSIFIED Your Name | Document Identification | Issue 1

Reliability of a system

Temperature, Vibration Pressure, ...

Corrosion (salt, chemical), Fungus Mine blast, humidity, ...

Failure Rate

- Requirement management from whole system to a component level
- Model based systems engineering

Lightning, Flight load Bird strike, Hail and ice...

Temperature, Sun and dust, Rain, wind, ...

Life Cycle Environmental Profile (LCEP)

- Main environmental phases
 - Production
 - System test
 - Transport A (transportation to
 customer)
 - Transport B (storage & logistic

 supply)
 - Storage ←
 - Installation
 - Operation
 - Transport D (transportation to destruction site)

• Environmental conditions

(Truck, flight, ship) Vibration, humid, temperature

(Truck, flight, ship, animal,...)Vibration, shock, temperature cycling, humid, salt, ESD

Humid, temperature, ESD

Vibration, shock, temperature cycling, lightning, bird strike, sand, wind

Environmental requirements

• Standard

- STANAG 2895
- MIL-STD 810G
- MIL-STD-167-1A
- DEF-STAN 00-35
- MIL-STD-901D
- AECTP-230
- IEC 60721
- RTCA
-

Climate zones

- Customer defined
- Field measurement

Environmental test of modules and electronic

Field measurement of a land system

TEST TRACK IN HÄLLERED

2 – Construction site track

Större hinder för anläggningsmaskiner och terrängfordon 750m lång

3 – Durability Track

Gropar, kantsten, tvättbrädor och kullersten 2600m lång

4 - Gravel Road Track

Underhållen för att efterlikna typisk grusväg 1500m lång

9 - Slopes

Varierande backar mellan 8% och 60%

Durability track can be considered correspond to severe offroad in MIL-STD 810

Vibration transport endurance test

- Analysis data from field measurement
- Identify real time vibration level
- Design the endurance test using acceleration formula

$$\frac{t_2}{t_1} = \left[\frac{w_1}{w_2}\right]^{m/2}$$

Where:

- t₁ equivalent test duration
- t₂ real time
- w_1 ASD at test condition, g²/Hz
- w_2 ASD at real time, g²/Hz
- m a value based on the slope of the S-N curve for the material, usually between 5 to 8.

Usually a value of m=7.5 has been used for random environment.

Temperature test

Temperature endurance test

- Operational profiles define climate environment and deployment
- Number of cycles for different temperature intervals from operational profiles
- Define a temperature cycle using acceleration formula
- For solder joints, the Norris & Landzberg can be used:

```
AF = n_2 / n_1 = (\Delta T_1 / \Delta T_2) \alpha (f_2 / f_1) \beta \exp [1414 \{ 1/T_{max2} - 1/T_{max1} \}]
```

Where AF = acceleration factor

- ΔT = temperature variation in one cykel (°K)
- n = number of cycles
- f = frequency, number of cycles per 24 hours.
- $T_{max} = max$ temperature in the solder (°K)
- index 1 = accelererat test in lab
- index 2 = environment in field

Reliability of electronic

- Methodology and tools for analysis of reliability of electronic
 - Finite element method and DOE (design optimization)
 - Sherlock Software for life predictions for electronics components
- Temperature cycling test

Summary

- LCEP with a list of all events with duration and chronological order is essential for a proper test tailoring
- Search for real environmental data representative for each identified event
- Synopsis of data to deduce a specification with realistic duration
- Establishment of the test program, have a balace between saving test time and a representative test
- Standards require test tailoring: MIL-STD 810, GAM.EG 13 and the NATO (STANAG 430)

