

Vibration Research Europe GmbH

DIFFERENCE MATERIAL AN	BETWEEN ID VIBRATION TEST	5
The Material Test with vibrating load component.	's investigates the Life Time	of a
The Load is set to be equal to Excitation Force F [N] on the test	object!	(Force) Krait +F
Correct, because Well defined state of tension Low excitation frequency		A Coversche Hatlische (Cross Sectional Aree)
• One axis state of stress		4
 Tensile/compression stress: Strain: Strain is a relative length variation: Absolute length variation (Elongation) 	$ \begin{aligned} \sigma &= F/A \\ \varepsilon &= \sigma/E \\ \varepsilon &= \Delta I/I \\ \Delta I &= \varepsilon * I \end{aligned} $	F Kraft (Force)

Vibration Research Europe GmbH

	Transient Signal	Classical HS Bulco	Classical	
Frequency Content	~4.000Hz	10Hz - 2 500Hz	10Hz - 1 000Hz	
Pulse Width	4.000112	Ims	Ims	
Excitation	~30g _{deak}	~30g _{deak}	~30g _{pfak}	

(CL)		CREA HIST	ATE A TE ORY DA	ST PROF	ILE FRO	М ТІМЕ	
Defini Result	ition of a SR ts and sumr	S pulse mary of the	investigatio	ns			
			Original Transient Signal	SRS Synthese Damped Sine	SRS Synthese Wavelet	SRS Synthese Random	SRS Synthese Pyro-Shock
	Frequency	Content	≈ 1.000Hz	5 - 1.500Hz	5 - 1.500Hz	5 - 1.500Hz	5 - 1.500Hz
	Signal Leng	gth te _{effectiv}	3,0ms	≈ 540ms	≈ 270ms	≈ 950ms	≈ 3,7ms
	Excitation		≈ 42g _{PEAK}	≈ 20g _{PEAK}	≈ 14g _{PEAK}	≈ 18g _{PEAK}	≈ 41g _{PEAK}
	Response 0	Ch2	≈ 66g _{PEAK}	≈ 66g _{PEAK}	≈ 68g _{PEAK}	≈ 67g _{PEAK}	≈ 52g _{PEAK}
							Pr. 107.

Vibration Research Europe GmbH

Vibration Research Europe GmbH

EF Conset

Cycle court for each beganny for ÚШ Damage Calculation

- 105 m

Namow Band-Pass Fibers Rainflow Counting Algorithm Andure down Tor and Testamo ter

HANDLING OF THE TIME SIGNAL

RANDOM PSD Profile and Test Time with the same Fatigue

- RANDOM PSD Prohile and Test Time with the same Fatigue Theory of the FDS calculation Velocity is desired because Henderson-Piersol equations utilize velocity Velocity has a direct relationship to stress So the acceleration waveform is converted into a velocity waveform
- Stress waveform is narrow-band filtered and the defined Q value is used
- Stress waveform is narrow-band filtered and the defined Q value is used Q value determines filter bandwidth Cycle counting and damage calculation ensure in each frequency-bin to determine damage contributions over a spectrum of frequencies. Spectrum spacing determines number of points in spectrum (number of frequency bins)

VIBRATION RESEARCH					
RANDOM PSD Profile and Test Time with the same Fatigue					
Theory of the FDS ca	lculation				
Narrow Band Filter	Single/Norrow Range Frequency Waveforms Rainflow Cycle Counting	Damage Calculation	Fatigue Damage Spoctrum		
(, + 25me 0 - 2%		$\left[\frac{1}{2} - \frac{1}{2} + \frac$			
C = 100Hz		*** 	Accession of the second		
	in a second second	8 Number of Fargue Cycles	E Nord Reports		
1,-5004 0-15					

- The comparison of the two SRS shows if the generated test spectrum is within realistic limits as a result of the test time reduction (and therefore higher energy density).

Vibration Research Europe GmbH

Marker Höh 16 D 96524 Föritztal

2 +49 (0) 36764 81 6363 ⊠ Holger@VibrationResearch.de www.VibrationResearch.de

<section-header>
 HANDLINC OF THE TIME SIGNAL Statical Parmetes In the real world, probabilistic effects occur that cause a deviation in the lifetime results.
 The selfects are essentially due to variations in manufacturing quality, material quality and real starss.
 Definition of the used distribution function to described the failure probability.
 This kind of failure information can come directly from the investigated test device or from a similar device - as an example from a previous device.
 The requirement is that the damage mechanism is identical, at a comparable vibration stress.
 Tor our example a test specification could be developed with this additional information as the stress of the safety factor of xx%.
 With a safety factor of xx%.
 Tor an required operating time of ~xx h.
 Decessary test samples

Vibration Research Europe GmbH

Vibration Research Europe GmbH