谢拉林

Li-Ion Batteries. Standards for Shock and Vibration Tests

Kjell Ahlin Xielalin Consulting kjell.ahlin@telia.com

SEES November 2022

There are quite many Shock and Vibration Test standards for batteries in electric vehicles Here we make some remarks and comparisons of those standards. Also some words about comparing Field Measurements with Standards.

SEES November 2022

谢拉林		
Some stan	dards:	
SAE J2380	Vibration testing of electric vehicle batteries	Random
IEC 62660-2	Secondary lithium-ion cells	Random
UN 38.3	Transport of batteries	Sine sweep
ISO 19453-6:2020	Traction battery packs and systems	Random, Shock
ISO 6469:1:2019	Safety specifications, Rechargeable	Random, Shock
ISO 12405	Li-ion battery systems	Random,Temp
	SEES November 2022	3

谢拉林

谢拉林

The standards mostly still treat the batteries as a component added to a vehicle.

No more! A car is becoming a battery on wheels!

SEES November 2022

DEC2013

TABLE 1 - VIBRATION SCHEDULE FOR RAN TEST CONDITIONS CONDITIONS TEST TEST TEST VIBRATION SOLO Acceleration Time Cumulative	DOM VIBRATION TEST	VE ALTERNATIVE
TEST NORMAL NORMAL A TEST CONDITIONS CONDITIONS TEST TEST VIBRATION SOC Acceleration Time Cumulative	LTERNATIVE ALTERNATI TEST TEST	VE ALTERNATIVE
VIBRATION SOC Acceleration Time Cumulative		TEST
	Acceleration Time	Cumulative
Vertical Axis Vibratian	(g ma) (n)	Tirile, II
Vertical Lenactrum 100 19 0.15 0.15	1.9 0.15	0.15
Vertical 1 spectrum 100 0.75 5.25 5.4	0.05 3.5	3.65
Vertical 2 spectrum 100 1.9 0.15 5.55	19 0.15	3.8
Vertical 2 spectrum 100 0.75 5.25 10.8	0.95 3.5	73
Vertical 3 spectrum 20 1.9 0.15 10.95	1.9 0.15	7.45
Vertical 3 spectrum 20 0.75 5.25 16.2	0.95 3.5	10.95
Longitudinal Axis Vibration:		
Longitudinal spectrum 60 1.5 0.09 16.29	1.5 0.09	11.04
Longitudinal spectrum 60 0.4 19.0 35.29	0.75 6.7	17.74
Longitudinal spectrum 60 1.5 0.09 35.38	1.5 0.09	17.83
Longitudinal spectrum 60 0.4 19.0 54.38	0.75 6.7	24.53
Lateral Axis Vibration:		
Longitudinal spectrum 60 1.5 0.09 54.47 ⁽¹⁾	1.5 0.09	24.62(1)
	0.75 6.7	31.32(1)
Longitudinal spectrum 60 0.4 19.0 73.47"		24.44(1)
Longitudinal spectrum 60 0.4 19.0 73.47" Longitudinal spectrum 60 1.5 0.09 73.56 ⁽¹⁾	1.5 0.09	31.41

谢拉林	SVENSK STANDARD SS-ISO 19453-6:2020 Vägfordon – Miljökrav och miljöprovning för el- och elektronikutrustning i drivsystem för elfordon – Del 6: Batterier (ISO 19453-6:2020, IDT)	
	8.4 Structural durability and strength tests 8.4.1 General. 8.4.2 Fixture. 8.4.3 Pre-conditioning for mechanical tests 8.4.4 Durability test. 8.4.5 Mechanical shock. 8.4.6 Requirements.	20

谢拉林 ISO 1945

ISO 19453-6 shock tests. Same 6ms half sine! 20g, 13g, 30g for X, Y, Z. IEC 62660-2 has 51 g

	Category 1	Category 2	Category 3	
Shock wave form	Half-sinusoidal			
Shock duration	6 ms or OEM specific			
Number of shocks at SOC _{min}	3 per test direction ±X, ±Y, ±Z (total 18)			
Number of shocks at SOC _{max}	3 per test direction ±X, ±Y, ±Z (total 18)			
	X: 196,2 m/s ² or OEM specific	X: 176,58 m/s ² or OEM specific	X: 147,15 m/s² or OEM specific	
Acceleration	Y: 127,53 m/s ² or OEM specific	Y: 98,1 m/s² or OEM specific	Y: 78,48 m/s ² or OEM specific	
	Z: 294,3 m/s ² or OEM specific	Z: 245,25 m/s ² or OEM specific	Z: 196,2 m/s ² or OEM specific	
Operating mode	Operating mode 6.3			

7林					
INTERNATIONAL STANDARD	ISO 6469-1				
	Third edition 2019-04				
Electrically propelled road Safety specifications —	l vehicles —	6.2	Mecha 6.2.1 6.2.2	nical test General Vibration	
Part 1: Rechargeable energy stora (RESS)	age system		6.2.3	Mechanical shock	
	CEEC Navan	ban 2022			

	ISO 1	2405-1
	Electrically propelle Test specification for battery systems Part 1- High power of	ed road vehicles – ·lithium-ion traction upplications
Object Cell/Module/Pack/ Electronics	Electronic devices on the batteries Same as IEC 62660-2	Pack (including electronics)
Directions	Three directions	Three directions
Vibration mode Sinus/Random	Random	Random
Frequencies (Hz)	10-2000	5-200
Acceleration (g)	3 (rms)	1.44 (rms)
Time/axis (hour)	8	21

谢拉林	木	
	ISO 12405-4:2018	
	NOTE 1 Typical applications for high-power battery packs and systems are hybrid electric vehicles (HEVs) and some type of fuel cell vehicles (FCVs).	
	NOTE 2 Typical applications for high-energy battery packs and systems are battery electric vehicles (BEVs), plug-in hybrid electric vehicles (PHEVs) and some type of fuel cell vehicles (FCVs).	
	NOTE 3 Testing on cell level is specified in IEC 62660 series	
	SEES November 2022	29

谢拉林

ISO 12405-4:2018

A general standard for testing Li-ion battery systems containing electric performance tests, reliability tests and abuse tests. Superseeding -1.

Vibration tests on two levels are suggested; one test for electric and electronic devices identical to $\,$ IEC 62660-2 $\,$

One test for battery and pack systems. The latter test is done as three uniaxial random tests at 5-200 Hz. During the vibration test the temperature should be varied between -40C, ambient temperature and +75C.

SEES November 2022

30

谢拉林		
There is a	factor close to 10 ²⁴	
Q = 10 ?	When calculating the FDS the relative damping of the SDOF system must be specified in order to get the amplitude of the response, in this paper it's assumed to be 5%. Further, it's assumed that	
b = 4?	In the calculations the value of the Basquin coefficient, b , is set to 4. This is a material parameter	
K = 1000	$C = S^b N_f \qquad (1)$ Where N_f is the life-length, and the stress, S, is obtained from	
	S = KZ(t) (2) SEES November 2022	36

谢拉林 I checked with author, and his software calculates relative displacement in [mm], not [m]. Irvine script? That gives us a factor (1000*1000)^b = 10²⁴ Hopefully, the FDS from measurements are scaled the same way! Check with simulation: PSD to time signal Is PSD(time signal) = given PSD? Is FDS(time signal) = FDS(PSD)? SEES November 2022

谢拉林 Conclusions - The existing standards are a bit of a mess, when it comes to mechanical tests and comparison with field measurements! - The people in the business writing reports have a lot to learn! - For you: - be sure to know what you are doing - get familiar with your used software - complement with own software - simulate, simulate, simulate!