

Virtual vibration fatigue testing of a battery pack

Benjamin Grozdanic, Techincal Consultant Hexagon Design and Engineering

Hexagon AB in brief

Swedish stock market €500mn (2000) to €5.2bn (2022) More than 24,000 employees across 50 countries

Agriculture Asset Lifecycle Intelligence Autonomy & Positioning Geosystems Manufacturing Intelligence Mining Safety, Infrastructure & Geospatial Xalt Solutions

Manufacturing Intelligence

Production

Design & Engineering Business Unit

- 1. Replicate lab conditions (shaker test)
- 2. From roads to loads (digitized roads) for full vehicle durability
- 3. Define and optimize vibration test (surrogate loads)

Some of the benefit of simulated test

- The frequency-based approach natively fits the vibrational certification requirements, from sine sweep analysis to random PSD profiles (as in IEC 62660-2, ISO 12405 SAE J2380, USABC, ECE R100, UN 38.3)
- Early Insights on damaging conditions and critical components, rapidly assessing multiple variants and what-if studies
- simulating other environmental effects (hard to represent in test) affecting fatigue material response, such as extreme high or low temperatures

Single Input Base

Focusing on the fatigue vibration simulation of a HV battery, in this presentation we are addressing loading and computation challenges, including

- The automation of key functions in conditioning acquired loads and in the generation of ready to use inputs for the frequency domain
- The use of structured and integrated workflows, shareable and repeatable, also for the benefit of non-specialist workforce
- A modern «native» frequency domain architecture leading to high computational efficiency

Hexagon EV model development roadmap

Design and Optimize the Battery Pack

- Load transfer paths
- Protect battery modules
- Durability

Integrate the Battery Tray into the EV BiW

- Leverage to improve global stiffness
- Define attach point requirements

Torsional Stiffness 32

kNm/°

Analyze Full-Vehicle Behavior

- Impacts
- Vehicle dynamics
- Durability

Hexagon HV Battery pack virtual test model

Model	Hexagon-CsBP
Energy	60 kWh
Capacity	150 Ah
Voltage	400 V
Cooling	Water-glycol
Mass	375 kg
Number of modules	8
Number of cells per module	17
Number of cells per battery	136
Cell type	Prismatic

FE model

- 767808 nodes
- 1M+ elements
- 15 properties
- 6 materials

deformation

A simulation roadmap encompassing

- Obtaining FE transfer functions (x, y, z directions)
- Computing damage according to applicable standard
- Computing damage according to proving ground events

- Long. X (0.96g rms), Lat. Y (1.23g rms), Vert. Z (1.44g rms)
- 21 hours per axis

Individual Single Input Base (Iongitudinal X, lateral Y, vertical Z)

90720.00

13400 0

- 🗆 🗙

204120.00

158760.00

equency Analysis :

Adjust/increase frequency solution point distribution

uency Load Scheduler

	\$ Gener	ated by (AEFatigu	le (2021.	3 5935)					
ase	\$									
	vibtat	///	CSV	nasth5	corner	0	hxev_csb	pV2_max_	prin_HS_	sets
(Ical Z)	- vmatftg	60	мРа	range			TC (344			
		T11e	60	en	ID=ALUMI	NUM 6061	-16 (314) Parent	10=	
			oftware	CAREstic	ue\ 2021	2) Mindow		cos\Mate	nials) of	v material
	fe unit	<777	MPA	1	B	N	mm	Ces mare	1 1015 (C)	v_material
	vftgdef	777	dirlik	100	60					
	- vftgpar	m777								
	L	stress	MAXPREST	None	naver	None	1E-05			
	vftgseq	777	1	seconds		1	no			
		101	75600	102	75600	103	75600			
	🗏 vftgevn	t101	401							
		name	Event1)	directi	on					
	vrandps	501	1	1	1	0	60			
	🔤 vftgevn	t102	402							
		name	Event2 \	directi	.on					
	vrandps	502	2	2	1	0	61			
	vftgevn	t103	403	L						
	the second se	name	Event3	Z direct	10n	_	c. 0			
	vrandps	505		p py Dack)	L byou cch	0 from	02 V7 20cor	tul he e	ate bE	
		1	1	Pack	lixev_cst	p_rrespx	<u>vz_zase</u>	LVI_IIS_S	etsino	
		2	2							
	L	3	3							
	vftgloa	d401	psd	501	1					
	L 1	1								
	📃 vftgloa	d402	psd	502	1					
	2									
	vftgloa	d403	psd	503	1					
	- 3									
	vtabrnd	60	log	log						
		4.9	0	5	0.0125	10	0.03	20	0.03	
		200	0.00025	201	0	500	0	enat		
		4.0	rog	LOG	0.04	20	0.04	200	0 0000	
		201	0	500	0.04 a	20 andt	0.04	200	0.0000	
	- vtahrnd	62	log		ľ	enuc				
		4.9	0	5	0.05	10	0.06	20	0.06	
		200	0.0008	201	0	500	0	endt		
					-		-			

 The visual workflow is bidirectionally linked to the (Nastran "inspired") input txt file

db.xml

- Simple editing leads to quick repeated analysis
- used interactively or in batch mode
- Fast restarts (no change of system properties)

Vibration Fatigue Analysis with loads from virtual proving ground

MBD provides X,Y,Z time loading at the Battery location for increasing constant speeds and/or for different configurations

• The time load needs to be converted to the frequency domain

time domain loads conditioning and PSD generation -"Time2PSD"

- Editing the signals and generating readily available frequency domain input
 - Mean stress removal
 - Stationarity checks
 - Collate statistically similar sections
 - Auto choice of FFT buffer length (T) for all events simultaneously
 - Generate correlated input PSD matrix (accounting for phase relationship between channels)

Direct PSD	Cross PSD	Cross PSD	Cross PSD		
1-1	1-2	1-3	1-4		
Cross PSD	Direct PSD	Cross PSD	Cross PSD		
1-2	2-2	2-3	2-4		
Cross PSD	Cross PSD	Direct PSD	Cross PSD		
1-3	2-3	3-3	3-4		
Cross PSD	Cross PSD	Cross PSD	Direct PSD		
1-4	2-4	3-4	4-4		

Individual Single Input Base (Iongitudinal X, lateral Y, vertical Z)

Individual Single Input Base (Iongitudinal X, lateral Y, vertical Z)

\$ Generated by CAEFatigue (2021.3 5935) vibfat 777 time2psd battery pack time2psd200 hanning csv 9001 6 3 mapping 1 2 В autoT 0.5 200 50 autoD 0.5 50 1 ev opts 1 D:\CAEFatigue\USE CASES\Batteries\CARHS conf\MBD Signals\time2psd battery pack cfjob\time2psd battery pack timedata baseline 50kmh.csv ev opts 2 D:\CAEFatigue\USE CASES\Batteries\CARHS conf\MBD Signals\time2psd battery pack cfjob\time2psd battery pack timedata baseline 60kmh.csv ev opts 3 D:\CAEFatigue\USE CASES\Batteries\CARHS conf\MBD Signals\time2psd battery pack cfjob\time2psd battery pack timedata baseline 80kmh.csv ev opts 4 D:\CAEFatigue\USE CASES\Batteries\CARHS conf\MBD Signals\time2psd battery pack cfjob\time2psd battery pack timedata eXEV 50kmh.csv ev opts 5 D:\CAEFatigue\USE CASES\Batteries\CARHS conf\MBD Signals\time2psd battery pack cfjob\time2psd battery pack timedata eXEV 60kmh.csv ev opts 6 D:\CAEFatigue\USE CASES\Batteries\CARHS conf\MBD Signals\time2psd battery pack cfjob\time2psd battery pack timedata eXEV 80kmh.csv

- Again, the piped workflow is bidirectionally linked to the "control file" for batch/ scripted mode operation
- Simple editing leads to quick repeated analysis on multiple events

Individual Single Input Base

19 hexagon.com

Damage

Time Signals :											- 🗆 X
1	0.00	18.70	37,40	56.10	7.	4.80	93.5	0 112.20	130.90	149.60	168.30
Events +	EXEV cr 50k	mh	EXEV cr 60kmh		EXEV cr	80kmh ve	entob	Baseline 50kmh	Baseline 60kml	1	Baseline 80kmh
Channel 1	unipercelation of the state of		anairinna hainin anairinna anairinna anairinna anairinna anairinna anairinna anairinna anairinna anairinna anai	ninini.				hadimlifikananakalan kulanana kakalika hajimaha	hanninuu uu	-	aranaalannininininanti-aray-dahulaantu ()aray ()ur-yyyu
Channel 2	www.ywww.	vuunnahann	mmyullindunaan	www.hum	www.	weeker handland	VN	Ab-ethenistantionate all sectors and	der and the second s	www.	and and the second states and the second
Channel 3	warrantennillikanika	num limu	mannan	mmm	mmmmmm	mallunality	**	additional production of the second section of the second second section of the second s	harmannin Mithalanan Mara	****	umphilliphiliphiliphiliphiliphiliphiliphi
										R	

Examples of FE-MBS integrated vibration fatigue workflows have been shown on a reference HV battery pack

- Visual and graphically driven workflows with nested frequency domain load conditioning
 - Enhance our capability to understand, interpret, modify/react and repeat (early)
 - Are easily shareable and repeatable across a team, including non-specialists
 - help abridging simulation with testing as well as OEMs with suppliers
- The nature of the frequency domain combined with modern algorithm efficiency enables processing of very large problems with limited computational resources (home office laptop), as well as working in batch (e.g. Linux sever or cloud)

A team of Hexagon senior simulation specialists have contributed to this presentation:

- Fatigue modelling: Dr Marco Veltri, Dr Neil Bishop, Benjamin Grozdanic,
- Battery Design: Dr Luca Castignani
- FE modelling: Richard White
- Multibody Dynamics: Mauro Vesco, Manuel Chene

Thank you for your attention!